Stat 534: formulae referenced in lecture, week 7: Open population models, part 2

Assumptions of "usual" CJS

- No heterogeneity in time-specific capture probability, so like Mt
- All animals alive at t have same ϕ_t
- no loss, missed, or incorrectly recorded marks
- emigration is permanent
 - So confounded with survival, not P[capture]
- fates are independent
- instantaneous sampling periods and immediate release. Why?
 - Imagine short-term study.
 Period 1 is days 1-4, Period 2 is days 8-11.
 - Compute $\phi_1 = P[$ survive period 1 period 2]. Assume same for animals caught:
 - Days 4 and 8 (4 day survival)
 - Days 1 and 11 (10 day survival)
 - \Rightarrow heterogeneity in ϕ_1 if per day survival is constant
 - Not a problem if mortality only happens on day 7 (but I can't imagine a biological reason for this)
- Many of these can be relaxed

Population size estimates from CJS

- Add component for 1st capture process to lnL
 - Links N_i, p_i, i indexes time
 - $\Rightarrow JS$
 - $-\,$ Kendall 1985 has the modern version
- Horvitz-Thompson

 $\begin{array}{l} - \hat{N}_i = \sum_j 1/p_{ij}. \\ i \text{ indexes time} \\ j \text{ indexes individuals} \end{array}$

- In simple time only model, $\hat{N}_i = n_i/p_i$
- Variance of the HT estimate? details in readings
 - A very useful expression for variance

Var $\hat{N}_i = \text{Var E } \hat{N}_i | p_i + \text{E Var } \hat{N}_i | p_i$

- Links marginal variance (Var \hat{N}_i) to conditional moments, E $\hat{N}_i | p_i$ and Var $\hat{N}_i | p_i$
- \Rightarrow terms involving E $[1/p_{ij}]$, Var $[1/p_{ij}]$, and Cov $[1/p_{ij}, 1/p_{ij'})]$
- Cov is the covariance between two individuals (j and j') at same time (i)
- Use 1st order Taylor series expansions
- What you need to know about the variance estimator:
 - Different versions are available
 - What do you do with the Cov term? include it or not?
 - Without is very much easier to calculate
 - Cite your source or software!

Pradel reverse time estimators

- see hand-written notes
- Notation
 - $-\gamma_{i+1}$: "seniority" parameter
 - fraction of population at time i + 1 also alive at time i
- # Births between i and $i + 1 = N_{i+1}(1 \gamma_{i+1})$
- Pradel gives a direct estimate of birth rate
 - Included in the likelihood
 - Not a derived parameter

- CJS estimates survival of marked individuals
- Pradel estimates birth rate for individuals that are or will be marked

Pradel temporal symmetry model: estimate pop growth rate

- Combine CJS (forward time) and Pradel (reverse time)
- \Rightarrow direct estimate population growth rate

$$\frac{N_{i+1}}{N_i} = \lambda_i = \frac{\phi_i}{\gamma_i}$$

• Explanation/derivation in hand-written notes